Digital transformation: 6 ways to democratize data skills

15Apr - by aiuniverse - 0 - In Google Cloud AutoML


Digital transformation and analytics are nearly inseparable. “At the core of any successful digital transformation is the ability to leverage the company’s data assets to drive superior customer experiences, products and services as well as operating model efficiencies,” says Scott Snyder, a Digital and Innovation Partner with Heidrick & Struggles, and co-author of “Goliath’s Revenge: How Established Companies Turn the Tables on Digital Disruptors.”

Companies typically need data science know-how in order to connect data to analytics or algorithms and deliver digital insight. “Without a critical mass of these data science and analytics skills, companies will struggle to keep up with both customer expectations and new innovation opportunities,” Snyder says.

The gap between supply of and demand for data sciences skills is a problem IT leaders know well. One the one hand, data is growing at an exponential rate. “It’s widely reported that 90 percent of the world’s data has been generated in the last two years, and with data doubling every 1.2 years on average versus processing speed only doubling every one to 1.5 years, companies must become more efficient at analyzing data to keep up,” says Snyder.

Facebook Comments